
V

NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A245 772

'tGR 'N
D

T

THESIS
A PERFORMANCE ANALYSIS OF VIEW
MATERIALIZATION STRATEGIES FOR
SELECT-PROJECT-JOIN EXPRESSIONS

by

Jesse T. South

September, 1991
Thesis Advisor: Magdi N. Kamel

Approved for public release; distribution is unlimited

92-03199

U nclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS
UNCLASSIFIED

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution is unlimited.
2b DECLASSIFICATION/DOWNGRADING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a- NAME OF MONITORING ORGANIZATION
Naval Postgraduate School (If applicable) Naval Postgraduate School

37

6c ADDRESS (City, State, andZIPCode) 7b ADDRESS (City, State, andZIP Code)

Monterey, CA 93943-5000 Monterey,CA 93943-5000

8a NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c ADDRESS (City, State, andZIPCode) 10 SOURCE OF FUNDING NUMBERS

Proyrarn Eement NO Proje'.t NO Task No Work Unit Atcession

Number

11 TITLE (Include Security Classification)

A PERFORMANCE ANALYSIS OF VIEW MATERIALIZATION STRATEGIES FOR SELECT-PROJECT-JOIN EXPRESSIONS

12 PERSONAL AUTHOR(S) South,JesseT.

13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (year, month, day) 15 PAGE COUNT
Master'sThesis From To 1991, September, 26 100

16 SUPPLEMENTARY NOTATION

The views expressed in this thesis are those ofthe author and do not reflect the official policy or position of the Department of Defense or the U.S.
Government,

17. COSATI CODES 1B SUBJECT TERMS (continue on reverse if necessary and identify by block number)

FIELD GROUP SUBGROUP View materialization, Query processing. Semi-materialization, Query modification, Select-
project-join expressions.

19 ABSTRACT (continue on reverse if necessary and identify by block number)

In conventional relational database systems, a view is a virtual relation whose definition is stored in the systems catalog. When a query is issued
on the view, the system retrieves the view from the catalog and modifies the query to an equivalent one on the base relations. Recently several
approaches have been proposed that store some form of the computed view as a method fIr improving the performance ofqueries on relational
databases. This thesis develops a computer program to empirically compare and evaluate three view materialization strategies: query
modification, semi-materialization and full materialization. The Program simulates user updates and queries, and measures the cost
performance of the three materialization strategies. The strategies are compared Ifr select-project-join expressions under three different view
models. The results show that the most efficient view strategy is hea% ilY application dependent. The performance ofsemi-materialization and
full materialization, however, are comparable for most conditions tested, and pret erred over the conventional query modification method.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
B

U N Ct
P S

s
'I IT UIif

t
I N.1 T Ei 3 ANi

t
AS Ri POR 3 01, - 0, Uic lassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area code) 22c OFFICE SYMPOL
Magdi N. Kamel 14oh'64t 2494 AS/KA

DD FORM 1473.84 MAR 83 AI'R editioti may be used until exhausted 5ECuRITY CLASSiFICATiON OF THIS PAGE
All other editions are obsolhLe Unclassified

Approved for public release; distribution is unlimited.

A Performance Analysis of View
Materialization Strategies for

Select-Project-Join Expressions

by

Jesse T. South
Lieutenant, United States Navy

B.S., University of Arizona, 1984

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
September, 1991

Author: _,__ ,- 1__ _ _ __- _

f - - Jesse T. South

Approved by:
-Magdi lk"*amel, T- ess Advisor-

Rachel Griffin, Second Reader

David R. Whipple Chai
Department of Administrative Sciences

ii

ABSTRACT

In conventional relational database systems, a view is a

virtual relation whose definition is stored in the systems

catalog. When a query is issued on the view, the system

retrieves the view from the catalog and modifies the query to

an equivalent one on the base relations. Recently several

approaches have been proposed that store some form of the

computed view as a method for improving the performance of

queries on relational databases. This thesis develops a

computer program to empirically compare and evaluate three

view materialization strategies: query modification, semi-

materialization and full materialization. The program

simulates user updates and queries, and measures the cost

performance of the three materialization strategies. The

strategies are compared for select-project-join expressions

under three different view models. The results show that the

most efficient view strategy is heavily application dependent.

The performance of semi-materialization and full

materialization, however, are comparable for most conditions

tested, and preferred over the conventional query modification

method. Accession For

/ /Dj A:

Av 'I
iii ~'~ '~r

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1

B. OBJECTIVE 2

C. SCOPE OF THE THESIS 2

D. METHODOLOGY 2

E. BENEFITS OF STUDY 3

F. ORGANIZATION OF THE STUDY 4

II. VIEW MATERIALIZATION STRATEGIES 5

A. QUERY MODIFICATION 6

B. FULL MATERIALIZATION AND DIFFERENTIAL UPDATES 7

C. SEMI-MATERIALIZATION 10

III. PROGRAM DESIGN 12

A. OPERATING ENVIRONMENT 12

B. GENERAL PROGRAM DESCRIPTION 13

C. MAIN MODULE DESCRIPTION 14

1. Control Module (Main Module) 15

2. Initialize Test Database Module 15

3. Query Modification Module 16

4. Full Materialization Module 17

5. Semi Materialization Module 18

iv

6. Compute Average Time Module..........18

7. Compute f,, f. and P Module..........19

8. Compute Table Counts Module..........20

D. PROGRAM OPERATION.................21

1. Starting the Simulation............21

2. Execution...................21

a. Initialization Phase.............22

b. Testing Phase................23

C. Computation and Report Phase.........24

IV. PERFORMANCE ANALYSIS..................32

A. EXPERIMENTAL SETUP................32

B. PERFORMANCE TESTING................33

1. Model-i....................34

a. Results for Model-la.............35

b. Results for Model-lb.............37

C. Results for Model-ic.............38

2. Model-2....................40

a. Results for Model-2............41

3. Model-3....................44

a. Results for Model-3............45

V. CONCLUSIONS AND RECOMMENDATIONS.............64

APPENDIX A - STRUCTURE CHARTS................67

V

APPENDIX B - PROGRAM SOURCE CODE...............70

LIST OF REFERENCES.........................92

INITIAL DISTRIBUTION LIST.....................93

vi

I. INTRODUCTION

A. BACKGROUND

In relational database systems views are commonly used to

simplify the conceptual model of the database. A view is

defined by a relational expression or query over one or more

base relations. In conventional relational database systems,

a view is a virtual relation whose definition is stored in the

system catalog. When a query is issued on the view, the

system retrieves the view definition from the catalog and

modifies it to an equivalent one on the base relations. This

process is referred to as query modification.

Recently, several proposals have considered storing some

form of the materialized view to eliminate the need to

reevaluate the view definition every time it is referenced.

Two such proposals are full materialization and semi-

materialization. In full materialization a copy of the

retrieved view is stored in the database. In semi-

materialization, however, redundant subsets of the base

relations are stored in the database as an intermediate state

of computing the view. When a query is issued on the view the

subsets are easily joined to form the view.

1

B. OBJECTIVE

This thesis compares and evaluates the performance of

three view materialization strategies: query modification,

semi-materialization and full materialization. The objective

of this research is to verify empirically the results obtained

analytically under different parameter settings.

Specifically, the research develops a program that simulates

user updates and queries on test databases under varying

parameter settings. Cost performance of each materialization

strategy is measured, and the results collected and analyzed.

The overall objective of the study is to identify the

parameters under which each strategy performs the best for

different select-project-join expressions.

C. SCOPE OF THE THESIS

This thesis:

1. Develops a program that simulates users updates and
queries, measures the cost performance of the
materialization strategies, and collects the results.

2. Runs the simulation on different test databases under
different parameter settings for select-project-join
expressions.

3. Analyzes the results obtained, compares them with
analytical results, and draws conclusions.

D. METHODOLOGY

The methodology used for this thesis involves developing

a program that simulates user updates and queries, measures

2

the cost performance of each materialization strategy, and

collects the results. Experimental parameters are varied to

allow each strategy to be compared under different conditions.

Final results are analyzed, compared with analytical results,

and conclusions drawn.

The program is written in Microsoft C with embedded SQL

commands. The databases and views are managed by the database

management system, INGRES (version 8). The simulations are

run on a stand-alone 286 personal computer to avoid problems

associated with multi-user environments and to guarantee

accurate cost measurements.

E. BENEFITS OF STUDY

The performance of processing view strategies directly

relates to the performance of real-time applications, such as,

the use of surveillance systems for military applications.

These systems utilize timed updates of environmental

information that is periodically relayed from sensors. These

updates essentially trigger a view which must be analyzed and

responded to if a hostile presence is detected. As a delayed

response could hinder the performance of the system, optimal

processing of the view strategies should be performed.

3

F. ORGANIZATION OF THE STUDY

This thesis is organized as follows. Chapter II discusses

views in relational database systems, and presents three

different strategies for evaluating views. Chapter III

describes the design and implementation of a computer program

used to measure the cost performance of the view

materialization strategies. Chapter VI analyzes the results

of implementing the simulation program to determine the

conditions under which each strategy performs the best.

Chapter V discusses the conclusions of the study and indicates

directions for further research.

4

II. VIEW MATERIALIZATION STRATEGIES

Views are often used to simplify the conceptual model of

a relational database system. Views are defined by relational

expressions (queries) over one or more underlying base tables.

Views allow users to access and manipulate database tables in

a simplified manner.

Views may be virtual or materialized tables. The

traditional concept of a view is that of a "virtual" table,

i.e., a table that does not physically exist in its own right.

However, to the user it appears like a real table. The view

definition is stored in the systems catalog (i.e., database

dictionary). This definition is retrieved and combined with

the query on the view to evaluate the results. A relatively

recent approach is that of materialized views. Under this

approach the results of evaluating all or part of a view

definition may actually be stored. This concept reduces the

need to constantly re-evaluate the view definition every time

the view is referenced. Three types of approaches for

processing queries on views have been proposed. These include

query modification, full materialization, and semi-

materialization. These strategies are detailed in the

following sections.

5

A. QUERY MODIFICATION

The conventional method for processing queries on views is

query modification (Stonebreaker, 1975) . Under this approach,

a view definition is stored in the systems catalog. When a

query is issued on the view, the view definition is retrieved

from the catalog and appended to the query. The query is then

optimized and executed. An efficient access path is normally

chosen, as a good query optimizer should be able to select the

best access path for executing the query. Consider the

following database schema:

EMP (E#,ENAME,ADDRESS, SALARY, TITLE)

POS (E#, S#,LEVEL,KEYNO)

and the corresponding view definition:

GOODEMPS: Ti . e. ENAME, e.SALARY (Op. LEVEL > 10 (EMPI POS))

Now suppose the following query on GOODEMPS is made:

7T g. ENUM, g. ENAME ((3 g. SAAR> 50,000 (GOODEMPS))

The system converts the initial query into an equivalent query

on the underlying base relation:

ie. ENUM, G. ENAME (ae. SALARY> 50, O00 ApLEVEL>1O (EMPP4POS)

This query is then optimized and processed by the query

processor.

6

B. FULL MATERIALIZATION AND DIFFERENTIAL UPDATES

A materialized view is a stored copy of the result of

retrieving the view from the database. Any updates or

deletions made to the base relations need to be reflected in

the materialized view. The advantage of this method is an

increased response time when a query is performed, as much of

the work of processing the view has previously been performed.

The main disadvantage of this method is the incremental cost

of maintaining the materialized view as a result of updates to

the base tables'.

Several algorithms have been proposed to maintain these

materialized views. These methods include immediate

maintenance (Blakeley, 1986), deferred maintenance (Hanson,

1987), and periodic database snapshots (Adiba,1980) (Lindsay,

1986). Immediate maintenance allows the materialized view to

be updated as soon as the new records are inserted into the

base tables. This technique allows a good query response time

to be achieved. Deferred maintenance, on the other hand,

wait3 as long as possible to update the materialized view.

Updates are stored in a temporary file, and the view is not

updated until a query is issued on the materialized view.

This strategy incurs less overall cost, because several

updates may be placed into the temporary file before a query

is issued on the materialized view. Finally, updates in

1 Cost here refers to the additional CPU time required to
perform the given operation.

7

periodic database snapshots have no pre-determined

periodicity, but may be optionally generated by the user.

However, this method does not guarantee an updated

materialized view when a query is issued. (Srivastava, 1988)

Certain view expressions could make use of differential

update techniques. Instead of recomputing the updated view

expression each time the base tables are updated, differential

update algorithms identify which tuples must be inserted into

or deleted from the current materialized view. With select-

project-join expressions, the distributive properties of

selection and projection over union, is capitalized on to

provide an acceptable differential update algorithm.

Consider the following expression of the materialized view

GOODEMPS.

GOODEMPS: 7e. ENITMe.ENAME, o. SALARY(Up. LEVEL> 10 (EMPPPOS))

Suppose that the materialized view is updated by the insertion

of tuples A, and deletion of tuples D, from the base relation

POS. Only the net changes made by these sets of tuples will

be included in this transaction. If another different tuple

is inserted and then deleted within the same transaction, it

will not be represented in the sets A, and D1 . The new state

of the above expression becomes:

GOODEMPS' = 7e.ENUM, e.ENAMW, e. AL (OP.LEVEL>10

(((EMP-D1) UA1) "POS))

Expanding the above expression, and distributing selection and

projection over union, the following is obtained:

GOODEMPS' = 'e. ENUM, e. ENA¥ ,e. SAL (op. LEVEL> 10((EMP M POS)
- (DI EMP) U (A1, EMP)))

= 7eENUM, e. ENAMEe. SALARY (a p.LEVEL> 10 (EMPoPOS)
-e .ENUM, e. ENAME, e. SALARY (op. LEVEL> 10 (D i EMP)
Ur eENUM, e. ENAME, G . SALARY (0 e. LEVEL> 10 (Al "EMP)

= GOODEMPS - ne. ENtM, e. EAME, .e SALARY (Op. LEVEL> 10

(Di f EMP) U 7t e. EN , e. ENAME, e. SALARY (Op. LEVEL> O

(Al oEMP))

Therefore, the materialized view may be updated by computing

the last two expressions and then inserting or deleting them

from the relation, GOODEMPS. For simplicity, only updates to

the base relation, POS, have been considered in this study2 .

The algorithm becomes more complicated as insertions and

deletions occur. One reason is that more than one source may

have contributed to the tuples in the materialized view. If

a deletion transaction occurs and the view is stored with the

duplicates removed, it is impossible to know if a record

should be removed from the materialized view. To overcome

this complication, each fully materialized view should store

a duplicate count to indicate the number contributing to each

2For a more complete discussion of differential updates
see (Blakeley, 1986) and (Kamel, 1991).

9

tuple in the view when EMP and POS are joined. The count may

be either incremented or decremented accordingly each time a

insertion or deletion occurs. The tuple may be removed from

the view when the count becomes zero during a

deletion. (Hanson, 1987)

C. SEMI-MATERIALIZATION

Semi-materialization stores redundant subsets of carefully

chosen data from individual base relations (Kamel, 1990).

These subsets represent an intermediate state of the view.

Each subset is a projection of each base relation of the

attribute(s) specified in the view expression and clustered on

the join attribute(s). This technique allows for efficient

view evaluation and easy maintenance of redundant relations.

Updates to the base relations are screened to see if they

affect the semi-materialized relations. If this occurs, the

updates may be inserted into the redundant subset without the

added cost of joining the updates with another relation.

Using the semi-materialization technique, the following

redundant relations (clustered on the join attribute ENUM)

would be stored for the previously defined view GOODEMPS:

EMP'= E.ENUMoe. ENAMEe. SALARY(EMP)

POS' 7p. ENW,(op. LEVEL>Io(POS))

When a query is issued on the view, the system convert s it

into the following query on the redundant relations:

10

GOODEMPS a'. ENM, ' ENAME (0G.SALR> 5 0oo(POSEMP')

This process is similar to that illustrated for query

modification3.

Like full materialization, more than one source may have

contributed to the tuples in the semi-materialized view.

Again, if a deletion transaction occurs and the view is stored

with duplicates removed, it is impossible to know if a record

should be removed from the semi-materialized view. To

overcome this complication, each semi-materialized view should

store a duplicate count, indicating the number of tuples in

the base relation that contribute to each tuple in the view.

Then each time an insertion or deletion occurs, the count may

be either incremented or decremented accordingly. The tuple

may be removed from the semi-materialized view when the count

becomes zero during a deletions. (Hanson, 1987)

3This technique is fully discussed in (Kamel, 1991).

11

III. PROGRAM DESIGN

This chapter presents the design and implementation of a

computer program used to measure the cost performance of the

three materialization strategies. The main function of the

program is to simulate user updates and queries and to measure

and report the performance of each materialization strategy.

The simulation program is written in C with embedded SQL

commands to access the INGRES relational database.

A. OPERATING ENVIRONMENT

The database consists of two base relations with the

profiles specified in Table 3.1 and 3.2. In these tables, VAL

is the number of unique values of each attribute, SIZE is the

size of each attribute, and CARD is the cardinality of the

relation. The important parameters of the analysis are

described in Table 3.3. Updates to the base relations and

queries on the view are the only two database operations the

program may perform. It is assumed there will be k update

transactions, each modifying 1 tuples, and q queries on the

view. To prevent the query from benefiting from the indexing

used for the view, the view predicate is different from the

query predicate. The indexing structure used is a compressed

12

B-tree4 . Performance is measured as the average elapsed time

per query over all k updates and all q queries.

B. GENERAL PROGRAM DESCRIPTION

The purpose of this program is to simulate user updates

and queries to measure the performance of the three

materialization strategies. The performance is measured by

varying each one of the following parameters, while keeping

the other parameters constant.

1. The total fraction of updates to the number of operation,
P. This may be controlled by varying the value of
parameters k and q.

2. The selectivity of the view, f,. This is controlled by
varying the value of the parameter used in the view
predicate.

3. The selectivity of the query, fq. This is controlled by
varying the value of the parameter used in the query
predicate.

4. The cardinality (i.e., the number of tuples) used in the
update transaction, 1. This may be controlled by varying
the size of the update tuples generated by the data
generation program.

5. The cardinality of the base relations, N. This may be
controlled by varying the size of the POS and EMP tables
prior to the execution of the program.

The above parameters are considered to be the most

sensitive in determining the performance of each view strategy

(Hanson, 1987) (Kamel, 1990). The cost of updates and queries

'PC INGRES limits the storage structure to compre.3sed
heap and compressed B-tree.

13

is determined by computing the total elapsed time per query to

update the materialized view or the redundant relations and to

perform the queries on the view.

The principal modules of the program are the control

module (The Main Module) and the view materialization modules.

Figure 3.1 shows a simplified schematic diagram of the

simulation program. This diagram illustrates the relationship

between the principal modules and each functional phase. The

complete program design is discussed in the next section. The

control module oversees the activities of the entire program.

Input from a control file directs the control module as to

which operations to perform. The first operation initialize

the test database. The view strategies are then tested, and

the results are written to two output files.

Each of the view materialization strategies has its own

functional module. Each module measures the elapsed time for

performing either an update transaction or a query request.

C. MAIN MODULE DESCRIPTION

This section discusses the principal modules of the

simulation program in detail. The structured charts

demonstrating the data flows and system hierarchy are included

in Appendix A. The program source code is listed in Appendix

B.

14

1. Control Module (Main Module)

The purpose of the control module is to direct the

activity of the entire program. This includes controlling

inputs, invoking the view modules, and overseeing output

results. The module reads data from two control files. The

first file, DBINFO.DAT, shown in Table 3.4 contains

information about the database (i.e., cardinality,

characteristics of view and query predicates). The second

file, CNTRL.DAT, listed in Table 3.5 contains the parameters

used for the run. Output from the program is routed to the

Write Final Result module, where the summary results (Table

3.6) are written to a text file.

Functionally, the module reads data from the control

file. For each record of the control file, the module first

calls the initialization module, passing the value of the view

predicate. The view strategy modules are then invoked to

perform the updates and queries. The values of the parameters

k and q determine how many updates and queries are performed

respectively. Finally, the control module invokes the modules

that compute the average cost per query, table counts, and

predicate selectivities.

2. Initialize Test Database Module

The purpose of this module is to initialize the test

database. Each of the subordinate modules called by the

initialization module use embedded SQL commands to create the

15

database tables, views and indexes, and to copy the table

contents from text files. The module accepts as input the

view predicate from the main module.

Functionally, the module makes a call to the database

management system to destroy the old test database and then

create a new one. The module then invokes the following

modules to create the initial setup of the database.

1. The Create Tables module creates all the necessary base,
materialized view, and redundant tables.

2. The Copy Tables module loads the base tables from the
POSDAT and EMPDAT text files using the SQL copy command.

3. The Copy Semi- and Full Materialization module accepts
the view predicate as input using the SQL insert command.
Data from the base tables that meet the view definition
are inserted into the materialized view and redundant
tables.

4. The Create Table Index module modifies the table storage
structures to compressed B-tree with the SQL modify
command.

3. Query Modification Module

The purpose of the query modification module is to

perform an update transaction or query request, and to measure

the response time for queries. The module accepts as inputs

the type of operation to be performed (i.e., an update or

query), the value of the view and query predicates, the

running elapsed query time for query modification, and the

name of the detailed output file. The module returns the

current running elapsed time for queries.

16

Functionally, a control character determines whether

an update or query is to be performed. If an update is

selected, the module inserts the update records into base

relation, R1 (POS). If a query is selected, the module

performs a query on the view and measures its performance.

The module then computes the new running elapsed time and

writes the elapsed time for that run to the detailed output

file.

4. Full Materialization Module

The purpose of the full materialization module is to

perform an update transaction or query request and to measure

their performance. The module accepts as input the type of

operation to be performed (i.e., update or query), the value

of the view and query predicates, the running elapsed query

time for full materialization thus far, and the name of the

detailed output file. The module returns the current running

elapsed time.

Functionally, a control character determines whether

an update or query is to be performed. If an update is

selected, the module inserts the update records into the base

table, R1 (POS). It then inserts those records that meet the

view definition into the fully materialized view FULLMAT and

measures its performance. If a query is selected, the module

performs a query on the view and measures its performane.

The module then computes the new running elapsed time and

17

writes the elapsed time for that run to the detailed output

file.

5. Semi Materialization Module

The purpose of the semi-materialization module is to

perform an update transaction or query request, and to time

their performance. The module accepts as input the type of

operation to be performed (i.e., update or query), the value

of the view and query predicates, the running elapsed query

time for semi-materialization, and the name of the detailed

output file. The module returns the current running elapsed

time.

Functionally, the control character determines whether

an update or query is to be performed. If an update is

selected, the module inserts the update records into the base

table, R1 (POS). It then inserts those records that meet the

definition of the semi-materialized relations into Ri'

(POSPRIM), and measures its performance. If a query is

selected, the module performs a query on the view and measures

its performance. The module then computes the new running

elapsed time and writes the elapsed time for that run to the

detailed output file.

6. Compute Average Time Module

The purpose of this module is to compute the average

total cost per query for each view materialization strategy.

The module accepts as input the number of queries performed

18

and the total elapsed time to perform all queries on the view

and updates to the materialized view or redundant relations.

The average cost per query for each strategy is returned.

7. Compute f,, fq and P Module

The purpose of this module is to compute the ratio

values of the selectivity of the view, f,, the selectivity of

the query, f, and the probability of an update, P. The

module takes as input +he base value, the increment used, the

number of values in the predicate range (VAL) and predicate

values for the view and query, and the number of updates, k,

and queries, q. The module returns the estimated view

selectivity, the estimated query selectivity and the update

probability.

The variables base, increment and VAL are used to

define the range of values that the view and query predicate

may take. For example, the query predicate "salary" has a

range from 5,000 to 50,000. This range may be determined

using the values of the variables base, increment and VAL.

For the query predicate "salary", their values are 5,000,

5,000, and ten, respectively. The base starts at 5000 and is

incremented by 5,000 ten times to obtain the desired range.

The module also determines the probability of an update by

dividing the number of updates, k, by the total number of

updates and queries, k+q, (i.e., k/(k+q)).

19

8. Compute Table Counts Module

The purpose of this module is to calculate the number

of records in the base, view, and query. The base is the

count of all the tuples that could conceivably be derived by

joining of relations R1 (POS) and R2 (EMP) . For a one-to-one

join condition, the base would be equal to the larger of these

two relations. Since there is a one to many relationship

between EMP and POS the larger of the two relations is POS

(RI) . The values of the base, view and query are then used to

determine the percentage of records that are actually in the

view and in the query. The module accepts the query predicate

as input. It returns the count of the base, view, and query,

and the actual selectivity of the query and the view.

Functionally, the module creates a temporary table of

all possible records that could be in the view by joining the

tables, R1 (POS) and R2 (EMP). Joining the relations in this

manner permits conditions in which relation R2 is larger than

relation RI. It also allows an accurate count of the tuples

in the base for one-to-one join conditions. An SQL count is

performed on the temporary table to determine the number of

records in the base, view, and query. These counts are used

by the module to determine an actual percentage of the records

in the view and the query.

20

D. PROGRAM OPERATION

1. Starting the Simulation

The simulation program may be initiated from a DOS

batch file or by typing the file name directly at the DOS

prompt. The following conditions must exist to operate the

program successfully:

1. The files in Table 3.7 must be located in the working
directory.

2. The INGRES relational database management system must be
installed and put into the DOS directory path.

3. Sufficient disk space, as the simulation is very hard
drive intensive. An N size of 5,000 records used for
this analysis required five megabytes of disk space.

4. Patience. A single simulation run may take three hours
o:- longer to complete.

To run a simulation, the program name is entered from

the working directory. Execution of the program from a batch

file is slightly more complicated. Table 3.8 illustrates a

sample batch file, in which the database text files were

created and the control file, containing the parameters for

testing the strategies, was copied to the working directory.

The program was then executed. The batch file may be set up

to run the simulation in several different ways.

2. Execution

The parameters are read into the program from a

control file. Table 3.5 identifies the fields of a record of

the control file. To investigate the effects of a single

21

parameter on the cost per query, the value of the parameter is

varied over a predetermined range. Figure 3.2 illustrates an

example of a control file that could be used to vary the

probability of an update, P. In this example, the values of

the third field, the number of updates k, and fourth field,

the number of queries q, are varied to study the effect of

varying the probability of update on the cost per query.

The program itself may be broken down into three

phases: an initialization phase, a testing phase, and a

computation phase. The following sections describe these

three phases in more detail.

a. Initialization Phase

In the initialization phase the database is

initialized and populated. The old test database is destroyed

and a new one created. This includes the creation of all

relations (base and redundant), views, and indexes required by

the simulation. Separate relations are built for each

materialization strategy, so that each strategy may operate

undez similar environments5. Data is copied into the database

relations from text files created by a separate data

generation program. The last function of the initialization

phase modifies the database relations to a compressed B-tree

5Three relations are actually created for each strategy
to allow for testing of three way joins in future testing.

22

structure on the keys specified, and allows for the creation

of secondary indexes6 .

b. Testing Phase

In the testing phase, the program measures the

total elapsed time to update the redundant relations and to

query the views for each strategy. Two subloops exist in this

phase in which each of the strategies is tested according to

the parz.meters set in the control file. The values q and k

determine the number of times each loop will run. Each

strategy is then tested by its functional module.

The view materialization modules operate in

essentially the same manner. Each contain a case statement

that either updates the relations used by each strategy or

performs a query on the view. Computing the elapsed time is

the last function of the three modules. The operation being

timed is the main difference between the modules. The

performance of the queries is measured the same for all three

methods, but the updates are measured only for semi-

matezialization and full materialization. Time is measured

for updates to the redundant relations, and as query

modification has no redundant relations no time measurement is

required.

6To change modify and index keys the source code needs to
be changed and the program recompiled.

23

c. Computation and Report Phase

The final phase of the program consists of four

functions. First, the average cost per query for each

strategy is determined. This is accomplished by averaging the

total elapsed time for each strategy over the number of

queries, q, performed during that run. Second, the estimated

values for the selectivity of the view, (f), selectivity of

the query, (f4), and the probability of an update are

calculated from input provided by the control files. This

process verifies that the actual parameter selectivities match

the estimated ones. The third function determines the size of

the base, view, and query. Base is defined here as the

largest possible relation that could conceivably be derived by

joining the relations, EMP and POS. For a one-to-one join

between R1 (POS) and R2 (EMP), base is the size of relation

Ri. A count of the tuples in the fully materialized view is

used to determine the size of the view and the size of the

query. These three values are then used to calculate the

actual values of f (f,.) and f4 (fq.). The final step writes

the results in the final result file. The results are then

appended to the previous results, allowing the program to

operate repeatedly within a batch file. The program continues

until no further entries exist in the control file. The

program then reinitializes the database, tests the strategies,

and computes the results for each run.

24

TABLE 3.1 PROFILE OF RELATION Ri (POS)

E# S# LEVEL ACCREDITINFO

VAL 500 200 10 5,000

SIZE 6 6 2 86

CARD(POS) = 5000

TABLE 3.2 PROFILE OF RELATION R2 (EMP)

E# D# ENAME ADDRESS SALARY TITLE JOBDESC

VAL 500 1 500 500 10 10 10

SIZE 6 6 20 70 8 30 60

CARD(EMP) = 500

TABLE 3.3 PARAMETERS IMPORTANT TO ANALYSIS

Parameter Definition

N Cardinality of relation R1

k Number of update transaction on
base relations

1 Total number of tuples modified by
each update transaction

q Number of times the view is
queried

P Probability that a given operation
is an update (P = k/(k+q))

ff Selectivity of view predicate
(fraction of tuples in the view)

fq Selectivity of query predicate
(fraction of tuples retrieved by
the query on the view)

fR2 Size of relation R2 as fraction of
R1

25

E E E

0 0

Fiue .Shmai Dara f iultonPoga
26

TABLE 3.4 CONTENTS OF DBINFO FILE

Variable Description

ecard Cardinality of the employee
text file

pcard Cardinality of the possess text
file

scard Cardinality of the skill text
file (not used in this
analysis)

vmax Number of view predicates, used
to determine the range

vbase Lower bound of the range of
view predicate

vincr This value is used to increment
the view predicate range

qmax Number of query predicates,
used to determine the range

qbase Lower bound of the range of
query predicate

qincr This value is used to increment
the query predicate range

27

TABLE 3.5 CONTENTS OF CONTROL FILE

parameter description

viewcut f,, the selectivity of the view

querycut fq, the selectivity of the query

k Number of updates performed

q Number of queries performed

updat siz 1, number of tuples in the update

parameter Holds the name of parameter being updated

update rel Holds the name of relation being updated

10 50000 1 9 25 prob possess
10 50000 2 8 25 prob possess
10 50000 3 7 25 prob possess
10 50000 4 6 25 prob possess
10 50000 5 5 25 prob possess
10 50000 6 4 25 prob possess
10 50000 3 7 25 prob possess
10 50000 2 8 25 prob possess
10 50000 1 9 25 prob possess

Figure 3.2 Sample Control File.

28

TABLE 3.6 CONTENTS OF SUMMERY RESULTS

Variable Description

RUN# The number of control file
entries

VCUT View predicate value

QCUT Query predicate value

#TUP Value of 1, number in the
update

BASE Number of records in the base

VIEW Number of records in the view

QUERY Number of records in the query

FV Selectivity of the view

FVA Actual selectivity of the view

FQ Selectivity of the query

FQA Actual selectivity of the query

P Probability of an update

TIMEQM Average elapsed time of a query
for query modification

TIMESM Average elapsed time of a query
for semi-materialization

TIMEFM Average elapsed time of a query
for full materialization

29

TABLE 3.7 REQUIRED PROGRAM FILES

Filename Description

SIMVIEW.EXE The executable simulation program.

DATAGEN.EXE The data generation program, used to
produce all data text files.

CNTRL.DAT This file contains the control
information for the simulation.

DBINFO.DAT This file contains information
pertinent to the data text files,
i.e., cardinality, view and query
predicate range information,

DATA IN This is the control file for the data
generation program.

(The following files are created
by the data generation program)

POSDAT.DAT This text file contains the data for
the POS relation.

EMPDAT.DAT This text file contains the data for
the EMP relation.

SKILDAT.DAT This text file contains the data for
the SKILL relation, (not currently
used in this simulation).

UPDATE.DAT This text file is created during
execution of the program, and is used
to update the base relations.

(The following files are created
by the simulation program)

FNLRSLT.DAT This file contains the summary results
of the simulation.

RNRSLT.DAT This file contains the detailed
results of the simulation.

30

TABLE 3.8 SAMPLE EXECUTABLE BATCH FILE.

datagen. exe
copy cntrlp.dat cntrl.dat
simview. exe

31

IV. PERFORMANCE ANALYSIS

The performance characteristics of each materialization

strategy are different. In this chapter, the results of

implementing the simulation program are analyzed and the

condition under which each strategy performs the best are

determined.

The view simulation is carried out on a 286 personal

computer running the DOS operating system. The program is

written in C with embedded SQL commands that access the

relational database system INGRES.

A. EXPERIMENTAL SETUP

The database consists of two base tables. The profiles of

the base tables were shown in Table 3.1 and 3.2, respectively.

The parameters important to the experiment were shown in Table

3.3 of Chapter III. The default values of these parameters,

unless otherwise stated, are presented in Table 4.1. The

parameters that are used in the simulation are:

1. The fraction of updates to the total number of
operations, P. This is controlled by varying k and q.

2. The selectivity of the view predicate, f,. This is
controlled by varying the value of viewcut in the view
definition.

3. The selectivity of the query predicate, fq. This is
controlled by varying the value of querycut in the query
definition.

32

4. The number of tuples modified by each update, 1. This is
controlled by varying the size of the update relation.

5. The cardinality of the base relation RI, N. This is
controlled by varying the size of the text files used to
build the base relations, POSDAT and EMPDAT.

Each model is tested by varying one parameter at a time over

a suitable range, while keeping the other parameters at their

defaul, values. Two types of operations are performed: k

update transactions and q queries on the view. Performance of

each strategy is measured by the average elapsed time per

query, over all updates and queries.

B. PERFORMANCE TESTING

In the following sections, the performance of each of the

three techniques is analyzed for select-project-join view

expressions of the following form:

V = 7IR fields,R2. fields(C(R1) (R! "R2)

where R1 contains N tuples and R2 has fp N tuples. The

selection predicate, C(RI), restricts relation, RI, with

selectivity, f,. Three different models are considered:

1. Model-I - A select-project-join expression of the above
type, such that every tuple in R1 that satisfies the
selection predicate, C, joins with exactly one tuple in
R2. All updates are applied to RI, and R2 is never
updated.

2. Model-2 - An expression of the above type, where the
requirement that every tuple from relation Rl join with
exactly one tuple in R2 is relaxed.

33

3. Model-3 - An expression of the above type, where updates
are applied to both relat!,ns R1 and R2.

The results from each model are plotted to show the

differences between each strategy. Each graph plots the total

cost per query for e~cl- strategy versus the parameter under

investigation.

1. Model-i

In Model-i, the performance of the three strategies is

analyzed for the above select-project-join expression while

varying the access paths of the base relations. The view

definition and query used are given in Table 4.2. The access

paths used for the three program simulations are shown in

Tables 4.3, 4.4 and 4.5. In the first simulation, Model-la,

the access paths are set to be the most efficient for semi-

materialization and full materialization. The second

simulation, Model-lb, sets the access path to the join

attribute, ENUM, for all relations including the fully

materialized view. The third simulation, Model-ic, adds a

secondary index to the access path setup of the second

simulation.

Each model is executed by varying each of the five

parameters listed in the previous section. The differences in

cost per query for query modification, full materialization,

and semi-materialization are plotted against each parameter.

34

a. Results for Model-la

Figure 4.1 displays the cost of a query (in

seconds) against the probability that an operation is an

update, P. Except for high values of P, both full

materialization and semi-materialization are superior to query

modification. At values of P from 0 to .4, full

materialization performs slightly better than semi-

materialization. Semi-materialization exhibits a slightly

higher cost to perform the query. The main advantage of full

materialization is its lower cost of performing the query. At

P values greater than .4, the cost of full materialization

rises considerably as the cost of maintaining the materialized

view overwhelms the small query cost. The semi-

materialization performance is relatively stable for all

values of P less than .7 because of lower maintenance cost.

At values greater than .7, the semi-materialization

maintenance costs begin to rise significantly. The semi-

materialization performs better than query modification for

values of P less than .92. The cost of query modification is

relatively level for all values of P. It performs better than

full materialization for values of P greater than .8, and

better than semi-materialization for values of P greater than

.92.

Figure 4.2 plots the cost-per-query versus Lhe

selectivity of the view, f. Semi-materialization is the

preferred method for all values of f,. At f, values less tnan

35

.2, the cost for full materialization and semi-materialization

are comparable as maintenance cost for full materialization

tend to be low. However, as f increases, full

materialization maintenance costs are higher than that for

semi-materialization.

The cost-per-query versus the selectivity of the

query, fq, is presented in Figure 4.3. Semi-materialization

and full materialization again perform better than query

modification for all values of fq. However in this situation,

full materialization performs better than semi-materialization

over almost the entire range of fq. The reason that full

materialization is the preferred method is that the cost of

scanning the semi-materialized relations increases as the

fraction of the query increases.

Figure 4.4 graphs the cost-per-query to the number

of tuples in the update, 1. Semi-materialization is the

preferred strategy for values of 1 greater than 14. The

overhead of maintaining the fully materialized view outweighs

the small cost of performing the query on the view.

Figure 4.5 shows the performance of the three

strategies versus the cardinality of the base relation RI.

Both semi-materialization and full materialization performance

is better than query modification. Semi-materialization is

favored at lower values of N (less than 7500) and full

materialization is favored at higher values of N. As the size

of the base relation, N, increased, the cost of scanning the

36

redundant relations to construct the view reduced the

performance of semi-materialization.

b. Results for Model-lb

The pattern of the results for Model-lb were very

similar to the results of Model-la. The small differences in

the graphs were due to changes in the amount of time the query

processor required to perform the query. As the access paths

were not as efficient as in Model-la, the query processor

required more time to scan the database relations.

Figure 4.6 shows the cost-per-query versus the

probability of an update. Semi-materialization and full

materialization performed better than query modification for

all values of P tested. However, at values of P greater than

.9, a trend emerged that indicated that query modification

would perform best. As with Model-la, full materialization is

slightly better than semi-materialization for values of P less

than .4. Conversely, semi-materialization is better for P

values greater than .4.

For the selectivity of the view, as shown in Figure

4.7, semi-materialization and full materialization perform

better than query modification for all values of f. Semi-

materialization is also the preferred method for almost the

entire range of f. Similar to Model-la, as f increases the

cost of maintaining the full materialization increases the

cost of this strategy over semi-materialization.

37

Full materialization is the favored method for

values of the selectivity of the query, f greater than .15 as

shown in Figure 4.8. In this instance, the cost of scanning

the redundant relation for semi-materialization increases as

the fraction of tuples retrieved in the view increases.

For the number of tuples modified by an update,

Figure 4.9, semi-materialization is shown as the preferred

method for values of 1 greater than 10. Again, this is due to

full materialization higher maintenance costs as the number of

tuples per update increases.

For the cardinality of the base relation versus the

cost-per-query, as indicated in Figure 4.10, full

materialization is the preferred method for values of N

greater than 7,500. Again, as the size of the base relations

increased the cost of scanning the redundant relations

increased. The scanning cost of query modification rise

dramatically in this model.

c. Results for Model-Ic

In Model-ic, the addition of a secondary index

showed an improved performance of the view materialization

strategies. The basic trends, however, remained the same.

Semi-materialization and full materialization perform better

than query modification for most parameter settings.

Figure 4.11 gives the cost-per-query versus the

probability of an update. Semi-materialization and full

38

materialization once again perform better than query

modification for most values of P. Query modification cost per

query dropped by more than half, as the secondary index

allowed for a more efficient access path for scanning the

relations to construct the view and perform the query. Semi-

materialization also improved slightly over Model-lb and

performed better than full materialization for values of P

greater than .3. Full materialization improved at lower

values of P, but degraded at higher values, because the added

cost of maintaining the secondary index is greater than the

time saved from increased query response.

Model-lc had its most obvious affect on the cost-

per-query versus the selectivity of the view (Figure 4.12).

Semi-materialization is still the preferred method, but the

addition of a secondary index to Model-lb improved full

materialization considerably at higher values of f,. As the

selectivity of the view increases, the improvement in response

time is greater than the increase in the cost of maintaining

the additional index. While thK model improves the

performance of full materialization, it is not the preferred

method. The additional index also improved query modification

at lower values of f where scanning costs are low.

Figure 4.13 plots the cost-per-query against the

selectivity of the query. Semi-materialization performance

improved when compared to full materialization. For values

less than .4, semi-materialization is the better strategy.

39

This is because a higher increase in maintenance costs is

incurred for full materialization from the addition of the

secondary index. At values greater than .4, full

materialization performs better because of the higher cost to

process the query in semi-materialization.

The cost-per-query versus the number of tuples in

the update is graphed in Figure 4.14. Semi-materialization is

the preferred method for all values of 2, even at values less

than 10, where full materialization was previously the

preferred method. The reason for that is because there is a

higher cost to maintain the secondary index for full

materialization.

The Cardinality of the base relations against the

cost-per-query is shown in Figure 4.15. Semi-materialization

performed better than full materialization for values of N

less than 12,500. The additional maintenance incurred by full

materialization to maintain the secondary index overwhelms the

increased cost of scanning the redundant relations for semi-

materialization. At higher values of N, (greater than 12,500)

full materialization is the preferred method, as scanning cost

begin to rise faster than maintenance cost.

2. Model-2

In Model-2, the view materialization strategies are

compared for the same select-project-join expression as abo,,-e.

The strategies are the same as before with the exception that

40

the condition that all tuples from relation R1 match with

exactly one tuple in R2 is relaxed. The view definition and

access paths used are the same as for Model-la (Tables 4.2 and

4.3). To relax the one-to-one join condition, the attribute,

ENUM (i.e., employee number) of the POS (RI) relation was

given a range of values larger than the actual number of

employees. In this simulation, the range of employee numbers

in relation POS was randomly distributed from one to 1000,

while the actual range of the EMP relation (R2) was one to

500. This reduced the one-to-one relationship by about 50

percent, because only half of the tuples in the POS relation

have matching tuples in the EMP relation.

a. Results for Model-2

Relaxing the one-to-one join condition reduces the

number of tuples in the view and query. This reduced view

size affects each view strategy differently. There is

virtually no change for query modification because the base

tables remain the same. Therefore, the performance of a

query incurs virtually the same cost. A slight improvement is

shown with semi-materialization, but the overall trends of the

graphs and the cost per query are virtually the same as the

previous model. A minor improvement occurs in the cost of

maintaining the redundant relations. This reduction is thought

to occur due to fewer update tuples meeting the view

41

definition. The cost per query showed a slight improvement,

probably because the query is joining fewer records.

The condition in which less than a one-to-one join

condition exists appears to be most favorable to full

materialization. Compared to Model-la, the cost-per-query is

lower for most parameter settings. The less than one-to-one

join condition reduces the size of the view thus allowing for

cheaper costs in maintaining and querying the view. While the

same cost is incurred for screening the update against the

view definition, a lower cost is incurred for maintaining the

fully materialized view storage structure. A smaller view is

also much faster to query.

Figure 4.16 plots the probability of an operation

being an update versus the cost-per-query. Except for high

values of P, semi-materialization and full materialization are

preferable to query modification. Query modification is

favored for values of P greater than .8 versus full

materialization, and .9 versus semi-materialization. Full

matecialization is preferred for values of P less than .45, a

slight improvement over Model-la thought to be caused by the

smaller size of the view. Semi-materialization is better than

full materialization at values greater than .45, because the

maintenance costs involved in full materialization overwhelm

any cost savings resulting from the smaller view, or quicker

query response.

42

The selectivity of the view is graphed in Figure 4.17.

The performance of semi-materialization and full

materialization are surprisingly comparable for all values f, .

The cost-per-query for full materialization dropped

considerably from Model-la, as fewer records meet the view

definition. With fewer records in the view, maintenance costs

are lower. Semi-materialization performance improves only

slightly. As the redundant relation, Ri (POSPRIM), still

contains all tuples that meet the view condition. Tuples are

not eliminated from the partially processed view until a query

is issued and the join condition is met. As a result, semi-

materialization performance stays relatively stable, while

full materialization improves considerably. However, even

with this improvement, semi-materialization is the preferred

strategy for all values of f,. Query modification is never

the preferred strategy.

Figure 4.18 shows the cost-per-query versus the

selectivity of the query. In this model, reducing the one-to-

one join condition reduces the number of tuples retrieved in

the query. As a result semi-materialization performance

improves at higher values of f.. Nevertheless, increasing

values of fq causes the cost of scanning the redundant

relations for semi-materialization to increase. This effect

makes full materialization the superior method for values of

fq greater than .18. This result is more pronounced in this

model, as full materialization maintenance costs are loweir.

43

The number of tuples in the update is graphed in

Figure 4.19. Again, semi-materialization and full

materialization are the preferred methods over query

modification. Both semi-materialization and full

materialization are comparable for all values of 1. At values

less than 20, the two strategies are equal. At higher values,

semi-materialization is only slightly better than full

materialization. The closeness of the two strategies is

related to the reduced size of the view. For full

materialization, this results in lower maintenance and query

costs, while semi-materialization costs remain similar to

those in Model-la.

Figure 4.20 shows the cardinality of the base

relations versus the cost-per-query. The results are similar

to those found in Figure 4.5. Full materialization is the

preferred method for values of N greater than 7,500 as the

cost of scanning the redundant relation degrades the

performance of semi-materialization at higher values of N. In

this situation increasing the size of the base relations

increases the size of the query.

3. Model-3

In this section, the three materialization strategies

are compared while applying updates to two base relations.

For Model-3, the view definition and access paths will be the

same as in Model-la (Tables 4.2,4.3). The condition that

44

every tuple in RI, matching the selection predicate, join with

exactly one tuple in RI, still applies. To keep the size of

the base relations in proportion with each other, updates to

R1 contain 1 tuples and updates to R2 have 42'1 tuples. For

this model, the same number of updates are applied to both

relations. For example, if R1 is updated twice, then R2 is

updated twice. The model tests the strategies for the same

parameters and conditions as in Model-la, except that the

additional cost of maintaining R2 is recorded.

a. Results for Model-3

Adding update transactions to both base relations

had some interesting results. As expected, query modification

was not affected. Since query modification has no redundant

relations, it incurs no additional maintenance. The same

result was true for semi-materialization in which redundant

relations are projections of single base relations. Updates

to the redundant relations require simple inserts of the

tuples meeting the view definition. The cost of maintenance

is dependent on the size of the redundant relation. In this

model, semi-materialization is slightly faster than it was in

Model-la as updates are split between two relations. Since R2

is smaller than R1 less maintenance time is required.

Conversely, full materialization is adversely affected by

updating both base relations. In full materialization, Lhe

updates inserted into one base relation must be screened and

45

joined wita tuples from the second base relation before they

can be inserted into the fully materialized view. Unlike

semi-materialization, updates to R2 experience higher

maintenance because they must join with R1 (a larger relation)

requiring more time for scanning.

The cost-per-query versus the probability that an

operation is an update is given in Figure 4.21. Except for

high values of P, semi-materialization and full

materialization are superior to query modification. Full

materialization is preferred for values of P less than .2, in

which semi-materialization incurs a higher maintenance cost to

perform the query. For values greater than .2, semi-

materialization is clearly the superior technique. Its

performance &hows very little change from Model-la as inserts

are perfora.ed on a single redundant relation for both update

operations. Full materialization, however, requires that

updates intended for R2 are joined with records matching the

view predicate in Rl. The size of R1 makes updates to R2

considerably more costly, due to the increased scanning time.

Detailed results show that the cost of maintaining R2 actually

triples for full materialization at higher values of P. Semi-

materialization maintenance costs may actually be less,

because less time is required to update the index for the

smaller relation, R2'. Query modification was the preferred

method for values of P greater than .65 versus full

materialization, and .9 versus semi-materialization. At these

46

points, the cost of maintaining the materialized view and

redundant relations overwhelms the small cost savings in

response time.

Figure 4.22 shows the total cost-per-query versus

the selectivity of the view, f,. Semi-materialization is

clearly the superior method for all values of f,. When

comparing the results to Model-la, additional updates to R2

are shown to cause full materialization to increase at a much

steeper rate. The graphs for semi-materialization and query

modification are virtually unchanged. This result is not

surprising for query modification, as no added maintenance

needs to be accounted for. Semi-materialization performs

slightly better, than in Model-la at higher values of f,.

This increase in performance occurs because half the updates

in this model are applied to a smaller relation, R2. Smaller

relations require less time to maintain their indexes.

Figure 4.23 plots the selectivity of the query

against the cost-per-query. Semi-materialization and full

materialization are better than query modification for all

values of fq. The additional maintenance incurred by full

materialization, however, make semi-materialization the

favored method for most values of fq. It is not until fq

reaches .78 that the cost of scanning the redundant relations

make full materialization the preferred strategy.

In Figure 4.24, the number of tuples in the update

is graphed. Semi-materialization is the preferred method at

47

all values of 1. At lower values of 1, where full

materialization had previously been preferred, increased

maintenance costs affect the results. Thus, full

materialization is never comparable to semi-materialization in

this situation.

The cost-per-query is plotted against the

cardinality of the base relations in Figure 4.25.

Semi-materialization and full materialization are both

preferred to query modification for all value of N tested.

However, in this instance semi-materialization is also favored

over full materialization for all values tested. The

additional updates are shown to cause full materialization

maintenance costs to increase, because they must be joined

with RI, which requires more time to scan. The performance of

semi-materialization shows little change from Model-la, as the

inserts are performed on a single relation for the update

operations.

48

TABLE 4.1 PARAMETER DEFAULT VALUES

N 5,000 P .5
k 10 f .1
1 25 f4 .1
q 10 fn .1

TABLE 4.2 VIEW DEFINITION AND QUERY ON VIEW

Expression

View: CREATE VIEW GOODEMPS (ENUM,ENAME,SALARY)
SELECT e.ENUM,e.ENAME,e.SALARY
FROM e,p
WHERE e.ENUM = p.ENUM
AND p.LEVEL > view predicate

Query: SELECT ENUM, ENAME
FROM GOODEMPS
WHERE SALARY > query predicate

TABLE 4.3 DEFAULT ACCESS PATHS

Base and Redundant Access path
Relation(s)

Ri (POS) Clustered index on field used in
view predicate

R2 (EMP) Clustered index on join field

Ri' (POS') Clustered index on join field

R2' (EMP') Clustered index on field used in
query predicate

MATVIEW Clustered index on field used in
query predicate

49

TABLE 4.4 ACCESS PATHS FOR MODEL-lB

Base and Redundant Access path
Relation(s)

Ri (POS) Clustered index on join field

R2 (EMP) Clustered index on join field

RI' (POS') Clustered index on join field

R2' (EMP') Clustered index on join field

MATVIEW Clustered index on join field

TABLE 4.5 ACCESS PATHS FOR MODEL-IC

Base and Redundant Access path
Relation(s)

Ri (POS) Clustered index on join field,
with secondary index on view
predicate

R2 (EMP) Clustered index on join field,
with secondary index on query
predicate

Ri' (POS') Clustered index on join field

R2' (EMP') Clustered index on join field,
with secondary index on query
predicate

MATVIEW Clustered index on join field,
with secondary index on query
predicate

50

30-

25-

815-

X Query ModifOmto

5- SemW Malttaaton
0 Full Materialization

I10.1 0.2 0.3 0.4 0'.5 0.8 0:7 0:8 0-9
Ratio of updates (P)

Figure 4 .1 Probability of an Update versus the
Cost-Per-Query for Model-la.

70,

60-

~40

30-

20
*K Query Modilcaton

10- 0 Sem ab"Wrlatlon

0 Ful MmterWullaton

0.1 0.2 0.3 0.4 0.5 0.6 0.708 :
Selectvity of the vie (fv)

Figure 4. 2 Selectivity of the View versus the
Cost-Per-Query for Model-la.

51

20-

~15-

A 10

5-)K Quey Modflcelor

E Semi Matelalzadon

* Ful Materlafztlon

0 0:Oi 0.2 0:3 0.4 0:5 0.6 017 018 0:9 i

Selectivity of the query (tq)

Figure 4.3 Selectivity of the Query versus the

Cost-Per-Query for Model-la.

20-

10

5- * Query Modrocaio

E Semi MatedIzafatIon
(> FUR Meteridizalon

0 1I 20i 30 40 So 60 7b 66 90 1&0
Number of tuples per upIdate (D)

Figure 4.4 Number of Updates versus the Cost-Per-
Query for Model-la.

52

35-

30-

S~ 25-

10- * Query Modloation

5 0Seo" Matsddzailo

0' Full Matedaizalor

ROO 75D0 10O 12600 150
Cainality of Base Relations (N)

Figure 4.5 Cardinality of the Base Relations
versus the Cost-Per-Query for Model-la.

40-

35-

to-)* Query Modflcsdon

o sera Materifdlzaton
c0 Full Materls~alaion

0.1 0.2 0.3 0.4 0.5 0.0 0.7 0.8 0.9 1
Ratio of updlates (P)

Figure 4. 6 Probability of an Update versus the
Cost-Per-Query for Model-lb.

53

70

60-

5OF

40
30-

20
A Query Modtion

10- " E Serl Mterl tzudon

0 Ful MaterWiado

0

0.1 0.2 03 0.4 0'.5 .6 0.7 o:B 059 i
Selectivity of the view (fq)

Figure 4.7 Selectivity of the View versus the
Cost-Per-Query for Model-lb.

405

35-

30-

j25-

~20-

10- * Query Modfcaon
C) El I Smiatuaer"on

5-
0Z~ Ful Malsalzatlon

0 .01 0.2 0.3 0.4 0.5 0607 0le 069 1
Select~vty of the query (fq)

Figure 4. 8 Selectivity of the Query versus the
Cost-Per-Query for Model-lb.

54

45-

4 0-

35-
0

j20-

10-

0l Serrd MetIdsfIIZtl
5- 0 Ful MateWIzatiori

0 10 20 t0 40 5O080 7b 80 90 160
Number of tupI93 per Ludte (Q)

Figure 4.9 Number of Tuples Per Update versus the
Cost-Per-Query for Model-lb.

35/

30

,S 25-

15-

0~ Full MatedaW~izal

7500 1 o6oo 12500 5o
Cardinality of Base Relations (N)

Figure 4. 10 Cardinality of the Base Relations
versus the Cost-Per-Query for Model-lb.

55

40-

35-

~30-

10-* Query Moificaton

C Seng Maledditation
0~ Full Materfatan

0.1i 0.2 0.3 0.4 0.5 0.6 0.7 019 0:9 1

Ratio of updates (P)

Figure 4 .11 Probability of a Update versus the
Cost-Per-Query for Model-ic.

100-

Bo-

.70-

~40-
30-

20-) Query Modilceton

C SWm aterleiieton
10-

0.1O' 0'2 0'3 0'4 0.5 06 0'7 0s 0:9 1~ FlMtedzt

Selectivity of the view (tv)

Figure 4.12 Selectivity of the View versus the
Cost-Per-Query for Model-ic.

56

30-

25-

I20-
15-

10-

*K Ouery Modificaon

5- 0 Semni Mazerlalzatlon

c0 Fu Materlujiaton

0 .1 0:2 0:3 0.4 0.5 O'S 0:7 0.8 0.9

Selectivity of the query (fq)

Figure 4.13 Selectivity of the Query versus the
Cost-Per-Query for Model-ic.

20-

~15 E

10-

5- W Quey Modrocaton

El Seri Maerelzeton

0~ Ful MaterMldlztori

0 10 20 30 40 50 80 70 80 90 i 6o
Numnber of tuples per updete (Q)

Figure 4.14 Number of Tuples Per Update versus the
Cost-Per-Query for Model-ic.

57

35-

30-

~25-

0 Fwi MaWiaIzaion

Cardinaity of Base Rotatons (N)

Figure 4.15 Cardinality of the Base Relations
versus the Cost-Per-Query model-ic.

30-

25-

S20-

10-

*K Qusy MOV40M~a
5- 0 Seffi Materldzation

o FRAI MatedNaaon

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 o.9
Ratio of updates (P)

Figure 4.16 Probability of an Update versus the
Cost-Per-Query for Model-2.

58

70-

i50 -
40-

20-
*K Quewy Modilcation

10- 0 SemI Mutsdzaion

c~Ful MaterkddhIoaln

0 .01 0.2 0.3 0:4 0:5 06S 0.7 0:8 0:9
Selectvity of th view (Nv)

Figure 4.17 Selectivity of the View versus the
Cost-Per-Query for Model-2.

20-

~15-

5 * ~Ouery Modiimon
IRO Semi Mawidalon

0 RA Matediatldon

C0 01 6:2 0'3 0'4 0'5 0.6 0'7 08S 0.9

Selecivty of the query (tq)

Figure 4.18 Selectivity of the Query versus the

Cost-Per-Query for model-2.

59

20

.15-

~10-

5- K Qury Mno

0 elMatsielbabon
0 Ful Materlulzauon

0 10 20 30 40 50 60 7b do -90 160
Number of tuplos Per uPdste (0)

Figure 4.19 Numrber of Tuples Per Update versus the
Cost-Per-Query for Model-2.

35-

30-

10- * Query Modkaisuo

Cardinfty of Base Rolalions (N)

Figure 4.20 The Cardinality of the Base Relations
versus the Cost-Per-Query for Model-2.

60

60O

55-

50-

V 45-40 -

35-

30-
S25-

15-) Query ModMfcaton

o) Semi Materalzation

5- B Full Mateiflzatlon

0 0.1 0.2 0.3 o.4 o:5 0. 0'.7 0:8 0'.9
Rado of updates (P)

Figure 4.21 Probability of an Update versus the
Cost-Per-Query for Model-3.

70

80-

,50-

Ir40-

20-

20
* Query ModhICIMon

10 0 Seml MtdaWizaflon
o 0' Ful MateruLatzon

0-
0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 09 1

Selectivity of the view (fv)

Figure 4.22 Selectivity of the View versus the
Cost-Per-Query for Model-3.

61

20-

~15-

5- K Query Modiicton

I] Semi Materlatilon

01 - 0 Full Materilization

6 0.1 0.2 0.3 0.4 0.5 066 0.7 0.8 0.9 1
Selectivity of the query (tq)

Figure 4.23 Selectivity of the Query versus the
Cost-Per-Query for Model-3.

20,

~15-

E 10-

*K Query Modifcation

El Sari Mateilization

c' Full Materlallzalon

0 10 20 30 40 50 60 70 80 907-60
Number of tuplos per update (1)

Figure 4.24 Number of Tuples Per Update versus the
Cost-Per-Query for Model-3.

62

35-

30-

,n 25-

0 Full Metsrlazallo

p00 7500 10600 12600 15600

Cardinaly of Base Relations (N)

Figure 4.25 The Cardinality of the Base Relations
versus the Cost-Per-Query for Model-3.

63

V. CONCLUSIONS AND RECOMMNDATIONS

Previous research has shown that storage of fully

materialized views is a viable alternative to query

modification'. This thesis backs the assertion that semi-

materialization may perform as well or better than full

materialization strategies (Kamel, 1990). While the results

show the performance of the best view materialization strategy

is highly application dependent, the performance trends show

that semi-materialization has the potential to be a desirable

option.

For select-project-join expressions, the trends of the

results were surprisingly comparable for all the conditions

tested. Semi-materialization and full materialization

strategies performed better than query modification, except

for extremely high values of P. For high values of P, f,,1

and lower values of fq and N, semi-materialization is favored

over full materialization. Under these conditions, the cost

of updating the fully materialized view exceeds the benefits

gained from the lower cost to perform the query. Conversely,

lower values of P, f, i, and higher values of fq and N favored

full materialization over semi-materialization. As the cost

of maintaining the materialized view was generally low and the

7Research in this area has been done by (Blakeley, 198 9),
(Hanson, 1987), (Srivatava, 1988), and others.

64

cost of scanning the redundant relations is generally high for

semi-materialization. However, at low values of P, f,, fq, and

1, the results show that the performance of both strategies is

comparable. The advantages of each strategy canceled each

other out (Kamel, 1990).

The analysis shows that full materialization is more

sensitive to change than semi-materialization. For all three

models, semi-materialization performance was relatively

consistent, while full materialization performance fluctuated.

In Model-2, if the condition that every tuple in Rl matches

with at least one tuple in R2 is relaxed, the performance of

full materialization is considerably improved relative to

semi-materialization. The smaller size of the view reduces

the cost of maintaining and querying the view for this model.

However, it is important to note that even with this improved

performance, semi-materialization is still the preferred

method. In Model-3, as the cost involved in maintaining the

view is high, performance for full materialization

deteriorates when updates are applied to both base relations.

The cost remains relatively stable for semi-materialization

performance as updates in this technique are made to single

relations. Full materialization updates require the screening

and joining of two relations. The cost associated with these

updates is dependent upon the size of the two relatiens.

These results back the assumption that the performance of

65

semi-materialization would improve when updates are applied to

more than one relation (Kamel, 1990).

The results presented in this thesis show that as the

cardinality of the base relations, N, increases, the region

where full materialization outperforms semi-materialization

also increases. Future research is needed to further examine

the performance of the three strategies over all parameter

settings at higher values of N. Future research may also be

directed towards the performance of views containing more than

two base relations. The expected result, based on this

thesis, is likely to be that semi-materialization will perform

well as the maintenance cost for full materialization should

be high.

66

APPENDIX A

STRUCTURE CHARTS

nCO,

Figure A. 1 Top Level Structure Chart of the View
Simulation Program.

67

If
INITIAJiZE

DATABASE

TABLESTABLESN

Figure A.2 Structure Chart for Process 1,
Initializing the Database.

RELATIONS

FUL

LFOAT MOO*IATRIALMATERLAL
TEXTMODUE MOULEMODULE

Figure A.3 Structure Chart for Process 2, Updatin
g the Database Relations.

68

QUERY

VIEWS

QUERY SM-FL
MOD AEILMTRA

MODULE

Figure A.4 Structure Chart for Process 3, Querying
the Views.

46
COMPUTE

RESULTS

0
a

Figure A. 5 Structure Chart for Process 4,
Computing Results.

69

APPENDIX B

PROGRAM SOURCE CODE

/* Title . View Materialization Simulation */
/* Author . Jesse T. South */
/* Date . 17 June 1991 */
/* Revised 08 August 1991
/* Purpose . Theses Research */
/* System . IBM 80286 clone */
/* Compiler Microsoft C 6.0, INGRES precompiler */
/* Description The program was written as part of a*/

thesis. The purpose of this program is to*/
simulate user updates and queries on a */

/* database, and to time their performance. */
The program utilizes embedded ESQL */

/* command to access the INGRES relational */
database. */

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
exec sql include sqlca;

#define size 16
#define dbinfo "info.dat"
4 iefine cntrlfl "cntrl.dat"
#define update file "data in"
#define finrslt "fnlrslt.dat"
#define runrslt "rnrslt.dat"

exec sql begin declare section;
#define empinfo "empdat.dat"
#define posinfo "posdat.dat"
#define skilinfo "skildat.dat"
#define updatinfo "update.dat"
exec sql end declare section;

70

void open files(FILE**, FILE**, FILE**);
void close files(FILE**, FILE**, FILE**);
void init test database(int);
void scan dbinfo(long*, long*, long*, int*, int*, int*, long*,
long*, long*);
void create tables(void);
void create views(int);
void create update table(void);
void copy_base tabfes(void);
void capysemi n full mats(int);
void create table index (void);
void moduleqm(char, int, long, double*, FILE*);
void module sm(char, int, long, double*, FILE*);
void module fm(char, int, long, double*, FILE*);
void write file headings(char*, char*, FILE*, FILE*);
void write-runiresult(char, char, int, long, double, long,
FILE*);
void writefinal result(int, int, long, int, long, long, long,

float,float, float, float, float, double,
double, double, FILE*, FILE*);

void compute_avg_time(int, double*, double*, double*);
void compute fv and fcandP(int, int, int, int, float*, long,

long, long, long, float*, int, int, float*);
void computetable counts(long*, long*, long*, long, float*,

float*);
void refreshupdate-text-file(long, long, long);

/* This is the Control Module, it control the entire */
/* simulation. The program first reads the file containing */
/* info pertaining to the database text files. It then */
/* loops through the simulation until the end of the control*/
/* file.

void main(void)
{
int K, Q, updat_siz, i, run cnt = 0, zero = 0;
int vmax, vbase, vincr, viewcut;
long ecard, pcard, scard, countb, county, countq;
long qmax, qbase, qincr, querycut;
float fv, fva, fq, fqa, P;
double timeqm, timesm, timefm;
char QUERY = 'Q', UPDATE = 'K';
char *prm_ptr, parameter[10], *updt_ptr, updatrel[10];
FILE *cntrl fl, *fresult fl, *run rslt;

71

prm_ptr = ¶meter(0];
updtyptr = &updat-rel(0];

open -files(&run -rslt, &cntrl-fi, &fresult-fi);
scan dbinfo(&pcard, &ecard, &scard, &vmax, &vbase, &vincr,

&qmax, &qbase, &qincr);

while(!feof(cntrl fl))/* while not end of file *
f 7* Initialization *
timeqm = timesm = timefm = 0.0;
countb = county = countq = 0;
fscanf(cntrl fl, "%d %ld %d %d %d %s %s", &viewcut,

&querycut, &K, &Q, &updat_siz, prm~ytr, updtyptr);
if (run-cnt == zero) write file headings (prmjptr,

updtyptr, fresult-fl, run rslt);
mnit test database (viewcut);
run cnt++;
printf('\n run # %d\n", run cnt);

1* Testing *1/
for(i = 0; i < K; i++)/* updates *

refresh -update-text-file(pcard, i, updat-siz);
module_qm (UPDATE, viewcut, querycut, &timeqm, run-rslt);
module -sm (UPDATE, viewcut, querycut, ×m, run -rslt);
module-fm (UPDATE, viewcut, querycut, &timefm, run-rslt);

for(i = 0; i < Q; i++)/* queries *

module__qm (QUERY, viewcut, querycut, &timeqm, run_rslt);
module sm(QUERY, viewcut, querycut, ×m, run rslt);
module-fm (QUERY, viewcut, querycut, &timefm, run-rslt);
I

1* Computation and reporting *
compute_avg time(Q, &timeqm, ×m, &timefm);
compute_fv-and-ffcand-P (vmax, vbase, vinor, viewcut, &fv,

qmax, qbase, qincr, querycut, &fq, K, Q, &P);
compute-table counts (&countb, &countv, &countq, querycut,

&fva, &fqa);
writef final result (run cnt, viewcut, querycut, updat-siz,

- - countb, county, countq, fv, fva, fq, fqa,
P, timeqm, timesm, timefm, fresult-fi,
run rslt);

exec sql disconnect;
system ("rmingres");

close -files(&run rslt, &cntrl fl, &fresult fl);
printf("\ndisconnect complete" n");

72

/* This function combines several function modules to */
/* initialize the test database.

void init test database(int viewcut)
{
system("destroydb thesisim");
system("createdb thesisim");
system("addingres -B -D64000");
exec sql whenever sqlerror stop;
exec sql connect thesisim;
create tableso;
create views (viewcut);
copy_base tableso;
copy_semi n full mats(viewcut);
create table indexo;
}

/* Opens the files for the control file, and result files. */
/* If there is an error, the program will terminate */

void openfiles(FILE **run rslt, FILE **cntrl fl,
FILE **fresult-fl)

{
*cntrl fl = fopen(cntrlfl, "r");
*fres,lIt fl = fopen(finrslt, "a");
*run rslt = fopen(runrslt, "a");

if((!*run rslt) II (!*cntrlfl) II (!*fresult fl))
{
printf("\nERROR: control or output files did not open");
fcloseall ();
exec sql disconnect;
exit (1);
}

73

/* Closes all opened files A

void close files (FILE **run rslt, FILE **cntrl-fl,
FILE **fresult-fl)

f
mnt i;

fprirltf (*fresult fl, "\n");
for (i=O;i<80;i++) fprintf(*fresult- fl,"r*r);

fclose (*run rslt);
fclose (*cntrl fl);
fclose (*fresult-fi";

/*Reads parameters used by the text generation program. *
/*Info includess file cardinality, number of posible value *
/* in view and query, the base value for views and query, *
/* and the increment each increases. *

void scan dbinfo(long* ecard, long* pcard, long* scard,
int* vmax, int* vbase, int* vincr,
long* qmax, long* qbase, long* qincr)

FILE* db info;

db info = fopen(dbinfo, "r");

if(!db info)

printf("\nERROR: dbinfo file did not open")
fcloseall(0;
exec sql disconnect;
exit (1);

fscanf (db info, "%ld %ld %ld\n", &*ecard, &*pcard, &*scard);
fscanf(db info, "%d %d %d\n", &*vmax, &*vbase, &*vincr);
fscanf(db info, "%ld %ld %ld", &*qrnax, &*qbase, &*qincr);
f close (db inf o);

74

/* Creates the base and redundant tables used in the
/* simulation. Each table is created for each strategy so
/* that each strategy is tested under nearly identical
1* circumstances. *

void create-tables()

1* creaLe query modification tables *
exec sql cr~eate table posqm

(e num integer2, snuxn integer2, level integeri,
keyno integer2, accinfo c86);

exec sql create table empqm
(e num integer2, dnum integer2, ename c20,
address c70, salary integer4, title c30,
jobdesc c6O);

exec sql create table skillqm
(snum integer2, sname c20, stype c34);

/* create semi-materialisation tables *
exec sql create table posam

(e-num integer2, snurn integer2, level integeri,
keyno integer2, accinfo c86);

exec sql create table empsm
(e num integer2, dnum integer2, ename c20,
adldress c70, salary integer4, title c30,
jobdesc c60);

exec sql create table skillsm
(snum integer2, sname c20, stype c34);

exec sql create table posyprim
(e num. integer2, keyno integer2);

exec sql create table emp_,prim
(e-num integer2, ename c20, salary integer4);

1* create full materialization tables *
exec sql create table posfm

(e-num integer2, snum integer2, level integeri,
keyno integer2, accinfo c86);

exec sql create table empfm
(e num integer2, dnum integer2, ename c20,
address c70, salary integer4, title c30,
jobdesc c6O);

exec sql create table skillfim
(snum integer2, sn-nlie c20, stype c34);

exec sql create table full mat
(e -num integer2, enarne c20, salary integer4,
keyno integer2);

75

/* Creates the views used by query modification and semi- */
/* materialization. They are used to process queries on the*/
/* view */

void create views(int viewcut)
{
exec sql begin declare section;

int view cut;
exec sql end declare section;

/* query modification view */
view cut = viewcut;

exec sql create view qm -view(e__num, ename, salary, keyno) as
select empqm.e_num, empqm.ename, empqm.salary,

posqm.keyno
from empqm, posqm
where empqm.e num = posqm.e num
and posqm.level >= :view cut;

/* semi-materialFization view */
exec sql create view sm view(enum, ename, salary, keyno) as

select empprim.e num, empprim.ename,
empprim. salary, posyprim.keyno

from empprim, pos prim
where emp_prim.e num = pos_prim.e num;}

/* Create the table used to insert records into the relation*/
/* being updated

void createupdatetable()
{
exec sql create table updatetbl

(e num integer2, snum integer2, level integerl,
keyno integer2, accinfo c86);

exec sql copy table updatetbl
(e num = cOcolon, snum= c0colon, level = cOcolon,
keyno cOcolon, accinfo = cOnl)
from :updatinfo;

}

76

/* Initializes the base tables. Copies the data from text *
/* files into the database tables

void copy-base-tables()

exec sql copy table posqm
(e -num = cOcolon, snum = cOcolon, level = cOcolon,

keyno = cOcolon, accinfo = cOni)
from :posinfo;

exec sql copy table possm
(e num = cOcolon, snum = cOcolon, level = cOcolon,

keyno = cOcolon, accinfo = cOnl)
from :posinfo;

exec sql copy table posfm
*(e num = cOcolon, snum = cOcolon, level = cOcolon,

keyno = cOcolon, accinfo =cOnl)
from :posinfo;

exec sql copy table empqm
(e num = cOcolon, drium = cOcolon, ename = cOcolon,

address = cOcolon, salary =cOcolon,

title = cOcolon, jobdesc =cOni)

from :empinfo;
exec sql copy table empsm

(e num = cOcolon, dnum = cOcolon, ename = cOcolon,
address =cOcolon, salary =cOcolon,

title = cOcolon, jobdesc =cOnl)

from :empinfo;
exec sql copy table empfm

(e num = cOcolon, dnum = cOcolon, ename = cOcolon,
address = cOcolon, salary =cOcolon,

title = cOcolon, jobdesc =cOnl)

from :empinfo;

exec sql copy table skillqm
(snum = cOcolon, sname = cOcolon, stype =cOnl)
from :skilinfo;

exec sql copy table skillsm
(snum = cOcolon, sname = cOcolon, stype = cOnl)
from :skilinfo;

exec sql copy table skillfm
(snum = cOcolon, sname = cOcolon, stype = cOnl)
from :skilinfo;

77

/* Initializes semi and full materialization tables by
/* inserting records from the base relations that meet the */
/* view definition

void copy_semi_n_fullmats(int viewcut)
{
exec sql begin declare section;
int view cut;
exec sql end declare section;

view cut = viewcut;

exec sql insert into posprim (enum, keyno)
select e num, keyno
from possm
where level >= :view cut;

exec sql insert into emp_prim (enum, ename, salary)
select enum, ename, salary
from empsm;

exec sql insert into full mat (e num, ename, salary, keyno)
select empfm.enum, empfm.ename, empfm.salary,

posfm.keyno
from empfm, posfm
where empfm.e num = posfm.e num
and posfm.level >= :view cut;

/* Modifies the storage structure on field indicated and a */
/* secondary index on the fields indicated

void create table index()
f
exec sql modify empqm to btree on e num;
exec sql modify empsm to btree on e num;
exec sql modify empfm to btree on e num;

exec sql modify posqm to btree on level;
exec sql modify possm to btree on level;
exec sql modify posfm to btree on level;

exec sql modify emp_prim to btree on salary;
exec sql modify pos_prim to btree on e num;

exec sql modify full mat to btree on salary;

78

/* create secondary indexes */
exec sql create index empqmdx */

/* on empqm (salary); */
exec sql create index empsmdx */

/* on empsm (salary);
exec sql create index empfmdx */

on empfm (salary);

exec sql create index posqmdx */
/* on posqm (level);

exec sql create index possmdx */
/* on possm (level);

exec sql create index posfmdx *1
on posfm (level);

exec sql create index eyprimdx */
/* on empprim (salary); */

exec sql create index pprimdx */
/* on pos_prim(enum); */

exec sql create index f matdx */
/* on full-mat (salary); */

/* This function simulates either an update or a query to a
/* database relation using the query modification
/* methodology. Time is only accumulated for queries here. */

void moduleqm(char cntrl char, int viewcut, long querycut,
double *timeqm, FILE *run rslt)

{
clock t tstart = 0, tstop = 0;
double elaptime;
long tbl-cnt = 0;

exec sql begin declare section;
int view cut;
long query_cut;
long qnum;
char qname[21);
long qkeyno;

exec sql end declare section;

exec sq] declare qmcl cursor for /*make changes here to*/
select e num, ename, keyno /* change query */

from qm view
where salary >= :querycut;

view cut = viewcut;

79

query-cut = querycut;

switch(cntrl-char) /*if K do update,if Q do query*/

case 'K' : /* updates ~
create update tableo;
exec sql insert into posqn

select *
from update tbi;

exec sql drop update-tbl;
break;

case IQ': 1* queries *
tstart = clocko;
exec sql open qm,_ci;
exec sql whenever not found goto cioseqxn-ci;
while(sqlca.sqlcode == 0)

exec sql fetch qmr_ci
into :qnum, :qname, :qkeyno;

/* printf("\nnuiber = %d", qnum); *
tbl cnt++;

closeqm ci:
exec sql whenever not found continue;
tstop = clocko;
exec sql close qm _ci;

break;

default:
printf("\nlncorrect control character\n'");
break;

1* compute new totals *
elap_ time = (tstop - tstart)/(double)CLKTCK;
*timeqm = *timeqm + elap-time;

write run result('q', cntrl char, viewcut, querycut,
elap -time, tbl-cnt, run-rslt);

80

/* This function simulates either an update or a query to */
/* a database relation using the semi-materialization
/* methodology. Accumulated time is gathered for both */
/* updates of redundant relations and queries on the view.*/

void module sm(char cntrl char, int viewcut, long querycut,
double *timesm, FILE *run rslt)

{
clock t tstart = 0, tstop = 0;
double elap time;
long tblcnt = 0;

exec sql begin declare section;
int view cut;
long query_cut;
long snum;
char sname[21];
long skeyno;

exec sql end declare section;

exec sql declare sm cl cursor for /* make changes to */
select e num, ename, keyno /* to query here */

from sm view
where salary >= :query_cut;

view cut = viewcut;

querycut = querycut;

switch(cntrl char) /* if K do update, if Q do query */
{
case 'K': /* updates */

create updatetableo;
exec sql insert into possm

select *
from updatetbl;

tstart = clocko;
exec sql insert into pos_prim

select e num, keyno
from updatetbl
where level >= :view cut;

tstop = clocko;
exec sql drop updatetbl;
break;

case 'Q': /* Queries */
tstart = clockO;
exec sql open sm cl;
exec sql whenever not found goto closesm cl;
while (sqlca.sqlcode == 0)

{

81

exec sql fetch sm ci
into :snum, :sname, :skeyno;

/* printf("\nsnum = %d", snum); *
tbl cnt++;

closesm ci:
exec sql whenever not found continue;
tstop = clockoa;
exec sql close sm-ci;

break;

default:
printf("\nlncorrect control character\n");
break;

/* compute new totals *
elap_time = (tstop - tstart)/(double)CLKTCK;
*timesm = *timesm + elap time;

write run result('s', cntrl-char, viewcut, querycut,
elap time, tbl-cnt, run rslt);

82

/* This function simulates either an update or query to a
/* database relation using the full materialization */
/* methodology. Accumulated time is gathered for the time */
/* to update the fulle materialized view and the time to */
/* the actual query on the fully materialized view */

void module fm(char cntrl char, int viewcut, long querycut,
double *timefm7 FILE *run rslt)

f
clock t tstart = 0, tstop = 0;
double elaptime;
long qcnt = 0;

exec sql begin declare section;
int view cut;
long query_cut;
long tbl cnt;
long fnum;
char fname[21];
long fkeyno;

exec sql end declare section;

exec sql declare fm cl cursor for /* make changes here to */
select e num, ename, keyno /* change to query */

from full mat
where salary >= :query_cut;

view cut = viewcut;
query cut = querycut;

switch(cntrl char) /* if K do update, if Q do query */
{
case 'K': * updates */

create update tal-eo;
exec sql insert into posfm

select *
from updatetbl;

tstart = clocko;
exec sql insert into full-mat (enum, ename, salary,

keyno)
select empfm.e num, empfm.ename, empfm.salary,

update tbl.keyno
from update tbl, empfm
where update tbl.e num = empfm.e num
and update tbl.level >= :view cut;

tstop = clocko(;
exec sql drop updatetbl;
break;

83

case 'IQ': /* queryies *
tstart = clock();
exec sql open fm ci;
exec sql whenever not found goto closefm cl;
while (sqlca.sqlcode == 0)

I
exec sql fetch fm -ci

into :fnum, :fname, :fkeyno;
1* printf('\n fnum = %d", fnum); *
qcnt++;
I

closefm ci:
exec sql whenever not found con'tinue;
tstop = clocko;
exec sql close fm-ci;

break;

default:
printf("\nlncorrect control character\n");
break;

/* compute new total times *
elap -time = (tstop - tstart)/(doubie)CL(_TCK;
*timefm. = *timefm + elap__time;

exec sql select rowtot = count(e-num) /* This was added *
into :tbl cnt /* to verify that *

from full mat /* the proper # *
where sal1ary >= :query_cut; /* of update recs ~

1* were added
write run iesult('f', cntrl-char, viewcut, querycut,

elap_time, tbl-cnt, run rslt);

84

/* Print out the header for each output file*/

void writefil3headings(char* param, char* updt tbl,
FILE* fresult_fl, FILE* run rslt)

{
timet today_t;

time(&todayt);
/* heading for final result file */

fprintf(fresult fl,"\f\n %s - FINAL RESULTS -\n",
ctime(&today_t));

fprintf(fresult fl,"\n The %s is the parameter being
tested", param) ;

fprintf(fresult fl,"\n The %s table is the table being
updated", updt tbl);

/* heading for detaiTed result file */
fprintf(run rslt,"\n %s - RUN RESULTS\n",

ctime(&today t));
fprintf (run rslt,"\n The %s is the parameter being tested",

param);
fprintf(run rslt,"\n The %s table is the table being

updated\n", updt tbl);
I

/* This function is used to print out the time/cost result */
/* of each individual query or update. It is called at the */
/* end of each test module call.

void write run result(char strat, char cntrl char,
int viewcut, long querycut, double elaptime,
long tblcnt, FILE *runrslt)

{
printf("\n%cm cc=%c vc=%d qc=%id et=%.21f tc=%ld", strat,

cntrl char, viewcut, querycut, elap_time, tblcnt);
fprintf (run_rslt, "\n%cm cc=%c vc=%d qc=%id et=%. 21f tc=%ld",

strat, cntrlchar, viewcut, querycut, elap_time,
tbl cnt);

8

85

/* Prints out the summary (final) results of each test run.d

void write-final -result (mt run, mnt viewcut,
long querycut,int updt siz, long countb,
long county, long countq, float fv, float fva,
float fq, float fqa, float P, double timeqm,
double timesm, double timefm, FILE *fresult fl,
FILE *run rslt)

{ * Prints to-screen
printf("\n\nRUN# %d, VCUT= %d, QCUT= %ld, #TUP= %d,

BASE= %ld, VIEW= %ld, QUERY= %ld", run, viewcut,
querycut, updt siz, countb, county, countq);

printf("\nFV= %.2f, FVA= %f, FQ= %.2f, FQA= %f
P= %.2f", fv, fva, fq, fqa, P);

printf("\nTIMEQM= %.31f sec, TIMESM= %.31f sec,
TIMEFM= %.31f sec\n", timeqm, timesm, tiinefm);
/* Prints to summary file */

fprintf(fresult fl,"\n\nRUN# %d, VCUT= %d, QCUT= %ld,
#TUP= %d, BASE= %ld, VIEW= %ld, QUERY= %ld", run,
viewcut, querycut, updt_siz, countb, county,
countq);

fprintf(fresult_fl,"\nFV= %.2f, FVA= %f, FQ= %.2f,

FQA= %f P= %.2f",fv, fva, fq, fqa, P);
fprintf(fresult fl,'"\nTIMEQM= %.31f sec, TIMESM= %.31f

sec, TIMEFM= %.31f sec\n",timeqm, timesm, timefm);
1* Prints to detailed file */

fprintf (run rslt,"\n\nRUN# %d, VCUT= %d, QCUT= %ld,
#TUP= %d, BASE= %ld, VIEW= %ld, QUERY= %ld1 , run,

viewcut, querycut, updt siz, countb, county, countq);
fprintf(run rslt,"\nFV= %.2f, FVA= %f, FQ= %.2f,

FQA= %f P= %.2f", fv, fva, fq, fqa, P);
fprintf(run rslt,'t \nTIMEQM= %.31f sec, TIMESM= %.31f

sec, TIMEFM %. 31f sec\n", timeqm, timesm, timefm);

86

/* Computes the average cost to query the databases for
/* each run.

void compute_avg_time (it Q, double *timeqm, double *timesm,
double *timefm)

if(Q > 0)

{tmq tmem (obeQ
*timeqm = *timeqm /(double)Q;
*timefm = *timefm /(double)Q;

else

printf ("\n\nERROR: dividing times by 0, ***results are

VOI

/* Computes the intended selectivity of the view (fv), *
/* selectivity of the query, and probability an update is a
1* query. *

void compute_fv -and fqand P(int vmax, int vbase, mnt vincr,
mnt vcut, flfoat * fv-, long qmax, long qbase, long qincr,

long qcut, float *fq, mnt K, mnt Q, float *P)

*fv =(float) (vmax) - ((f loat) (vcut - vbase) / (f loat) (vincr))
*fv =(*fv + (float) (vincr)/(float) (vincr))/(float) (vmax);
*fq =(float) (qmax) - ((f loat) (qcut - qbase) / (f loat) (qincr)) ;
*fq =(*fq + (float) (qincr) /(float) (qincr))/ (float) (qmax);

*P (float) (K) /(float) (K + Q);

87

/* This function counts the number of records in the base, */
/* view, and query. It then used those values to determine */
/* the actual values of the selectivity of the view, and */
/* query. */
void compute table counts(long *countb, long *countv,

long *countq, long querycut, float *fva, float *fqa)
{
exec sql begin declare section;

long query_cut;
long tbl cnt;

exec sql end declare section;

query_cut = querycut;

exec sql create table base mat
(e num integer2, ename c20, salary integer4,
keyno integer2);

exec sql insert into base mat (e num, ename, salary, keyno)
select empfm.e_num, empfm.ename, empfm.salary,
posfm.keyno

from empfm, posfm
where empfm.enum = posfm.e num;

exec sql select rowtot = count(e num) /* coun # in baser
into :tbl cnt
from base mat;

*countb = tbl cnt;

exec sql select rowtot = count(enum) /* count # in view */
into :tbl cnt
from fullmat;

*countv = tbl cnt;

exec sql select rowtot = count (enum) /* count # in query */
into :tbl cnt
from full-mat
where salary >= :query_cut;

*countq = tbl cnt;
/* determine actual selectivities */

*fva = (float) ((double)*countv / (double)*countb);
*fqa = (float) ((double)*countq / (double)*countv);

exec sql drop base mat;
8

88

/* The purpose of this function is to read the parameter '/
/* for the data generation program that are to be used to */
/* build the update table. Between each run, the program */
/* reads the parameters and refreshes them. Once refreshed */
/* the parameters are written back to file and the data
/* generation program is executed.

void refreshupdatetext file(long card, long i,
long updatesiz)

{
long update base;
int rum of fields, j, change-field = 4;
char file name[size] = updatinfo, *fileptr;
FILE *updat_fl;

strict field attrib
{
char fieldtype;
int field width;
char field info;
long lower bound;
int increment;
long upper bound;
struct field attrib *next;

t;

struct field attrib *first field = NULL;
struct field attrib *curren~t field = NULL;

struct field-attrib *print-ptr = NULL;

fileyptr = &file name[O];
update-base = (i-* updatesiz) + card +1;

/* compute new key base number */

/** Read old control input for data generation program /

updatfl = fopen(update file, "r");
if (!updat fl)
{
printf("\nERROR: update control file did not open to

read");
fcioseall();
exec sql disconnect;
exit (1) ;
}

fscanf(updat_fl, "%*d\n");
fscanf(updat fl, "%d',n", &num of fields);
fscanf(updat fl, "*s\n");

89

for (j = 1; j <= num-of-fields; j++)
f
if (j == 1)

f irstf field =:(struct f ield attrib*) malloc (sizeof (struct
field attrib)) ;

if (first field:!= NULL) printf("\nERROR: Memory did not
allocate!W!);

current-field = first-field;

else

current field->next =(struct
fiela5 attrib*)malloc(sizeof(struct field attrib));

current field = current field->next;

current field->next = NULL;

fscanf(updat fl, "\n%c\n", ¤t field->field type);
fscanf(updat_fi, "%d\n", ¤t field->feld width);
fscanf (updat fi, "%c\n", ¤t field->feld info);
fscanf(updatfl, "%ld\n", ¤t field->lower bound);
fscanf(updat_fl, "%d\n", ¤t Yield->increment);
fscanf(updat_fl, "%ld\n", ¤t-field->upper-bound);

if (j == change_field) /*changing base for keyno field*/
f
current field->lower bound = update-base;

fclose(updat_fl);

1* write updated control input for data generation program *

updat -fl = fopen(update file, "w");
if(!updat_fl1)

printf("\nERROR: update control file did not open to
write");

fcloseall();
exec sql disconnect;
exit (1);
I

fprintf(updat_fl, "%ldn", update siz);
fprintf(updat_fi, "%d\n", num of fields);
fprintf(updat_fl, Os", fileptr);

printjptr = first-field;
while(printptr != NULL)

90

I
fprintf(updat_fi, "\n\n%c\n", printyptr->field type);
fprintf(updat_f 1, "%d\n", printyptr->field width);-
fprintf (updat_f 1, "%c\n", printyptr->field7 info);
fprintf(updat_fi, "%ld\n", printyptr->lower -bound);
fprintf (updat f 1, "%d\n", printyptr->increment);
fprintf (updat~fl, "%ld", printyptr->upper-bound);
printyptr = printyptr->next;

fclose(updat-fi);

system("thesis");

91

LIST OF REFERENCES

Adiba, M., and Lindsay, B. G., "Database Snapshots," Proceedings
of the International Conference on Very Large Database, pp.
86-91, October 1980.

Blakeley, J.A., Coburn, N., and Larson, P.,"Updating Derived
Relations: Detecting Irrelevant and Autonomously Computable
Updates," ACM Transactions on Database Systems, v. 14, pp.
369-400, September 1989.

Blakeley, J.A., Larson, P., and Tompa, F.W.,"Efficiently
Updating Materialized Views," Proceedings of the 1986 ACM-
SIGMOD Conference on Management of Data, pp. 61-71,
Washington, D.C., May 1986.

Kamel, M.N., and Davidson, S.B., "Semi-Materialization: A
Performance Analysis," Proceedings of the 23rd Annual Hawaii
International Conference on Systems Engineering, pp. 393-399,
January 1990.

Kamel, M.N., and Davidson, S.B.,"Semi-Materialization: A
Technique for Optimizing Frequently Executed Queries," Data &
Knowledge Engineering, pp. 101-123, v 6, 1991.

Hanson, E.N.,"A Performance Analysis of View Materialization
Strategies," Proceedings of the 1987 ACM-SIGMOD International
Conference on the Management of Data, pp. 440-453, San
Francisco, CA, May 1987.

Lindsay, B.G., and others,"A Snapshot Differential Refresh
Algorithm," Proceedings of the 1986 ACM-SIGMOD Conference on
the Management of Data, pp. 53-60, Washington, D.C., May 1986.

Srivastava, J., and Rotem, D.,"Analytical Modeling of
Materialized View Maintenance," Proceedings of the 1988 ACM-
SIGMOD Conference on Management of Data, pp. 126-134, May
1988.

Stonebreaker, M.,"Implementation of Integrity Constraints and
Views by Query Modification," Proceedings of the 1975 ACM-
SIGMOD Conference on Management of Data, pp. 65-68, San Jose,
CA, June 1975.

92

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Dudley Knox Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Prof. Magdi N. Kamel, Code AS/KA 2
Department of Administrative Sciences
Naval Postgraduate School
Monterey, California 93943-5000

4. LCDR Rachel Griffin
US NROTC Unit
Morey Hall, University of Rochester
Rochester, New York 14627-0016

5. LT Jesse T. South, USN 2
3250 S. Mead Ave.
Tucson, Arizona 85730

93

